Passive Stiffness Changes Due To Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts

نویسنده

  • I. Makarenko
چکیده

In the pathogenesis of dilated cardiomyopathy, cytoskeletal proteins play an important role. In this study, we analyzed titin expression in left ventricles of 19 control human donors and 9 severely diseased (nonischemic) dilated cardiomyopathy (DCM) transplant-patients, using gel-electrophoresis, immunoblotting, and quantitative RT-PCR. Both human-heart groups coexpressed smaller ( 3 MDa) N2B-isoform and longer (3.20 to 3.35 MDa) N2BA-isoforms, but the average N2BA:N2B-protein ratio was shifted from 30:70 in controls to 42:58 in DCM hearts, due mainly to increased expression of N2BA-isoforms 3.30 MDa. Titin per unit tissue was decreased in some DCM hearts. The titin-binding protein obscurin also underwent isoform-shifting in DCM. Quantitative RT-PCR revealed a 47% reduction in total-titin mRNA levels in DCM compared with control hearts, but no differences in N2B, all-N2BA, and individual-N2BA transcripts. The reduction in total-titin transcripts followed from a decreased area occupied by myocytes and increased connective tissue in DCM hearts, as detected by histological analysis. Force measurements on isolated cardiomyofibrils showed that titin-based passive tension was reduced on average by 25% to 30% in DCM, a reduction readily predictable with a model of wormlike-chain titin elasticity. Passive-tension measurements on human-heart fiber bundles, before and after titin proteolysis, revealed a much-reduced relative contribution of titin to total passive stiffness in DCM. Results suggested that the titin-isoform shift in DCM depresses the proportion of titin-based stiffness by 10%. We conclude that a lower-than-normal proportion of titin-based stiffness in end-stage failing hearts results partly from loss of titin and increased fibrosis, partly from titin-isoform shift. The titin-isoform shift may be beneficial for myocardial diastolic function, but could impair the contractile performance in systole. (Circ Res. 2004;95:000-000.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts.

In the pathogenesis of dilated cardiomyopathy, cytoskeletal proteins play an important role. In this study, we analyzed titin expression in left ventricles of 19 control human donors and 9 severely diseased (nonischemic) dilated cardiomyopathy (DCM) transplant-patients, using gel-electrophoresis, immunoblotting, and quantitative RT-PCR. Both human-heart groups coexpressed smaller (approximately...

متن کامل

Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.

BACKGROUND Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunc...

متن کامل

Altered Titin Expression, Myocardial Stiffness, and Left Ventricular Function in Patients With Dilated Cardiomyopathy

Background—The role of the giant protein titin in patients with heart failure is not well established. We investigated titin expression in patients with end-stage heart failure resulting from nonischemic dilated cardiomyopathy, in particular as it relates to left ventricular (LV) myocardial stiffness and LV function. Methods and Results—SDS-agarose gels revealed small N2B (stiff) and large N2BA...

متن کامل

Titin isoforms, extracellular matrix, and global chamber remodeling in experimental dilated cardiomyopathy: functional implications and mechanistic insight.

BACKGROUND Altered titin isoforms may modify cardiac function in heart failure (HF), but the nature of isoform switches and associated functional implications are not well defined. Limited studies have reported an increased compliant isoform (N2BA) expression in human systolic HF. Titin may also modulate stretch-regulated responses such as myocardial natriuretic peptide production. METHODS AN...

متن کامل

CALL FOR PAPERS Cytoskeletal Networks and the Regulation of Cardiac Contractility Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth

Krüger, Martina, Thomas Kohl, and Wolfgang A. Linke. Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291: H496–H506, 2006. First published May 5, 2006; doi:10.1152/ajpheart.00114.2006.—The giant protein titin, a major contributor to myocardial mechanics,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004